

377 | P a g e

DESIGN, DOCUMENTATION AND VALIDATION OF THE SOFTWARE

ENGINEERING BY VERIFY THE SOFTWARE DESIGN AGAINST SRS USING

ARTIFICIAL INTELLIGENCE TECHNIQUE

Jyoti Sisodia,

Research Scholar

Dr. Ashish Chourasia

Supervisor

1- Research Scholar, Department of Computer Science, School of Engineering and Technology

University of Technology, Jaipur and 2- Supervisor, University of Technology, Jaipur

DECLARATION: I AS AN AUTHOR OF THIS PAPER / ARTICLE, HEREBY DECLARE THAT THE

PAPERSUBMITTED BY MEFORPUBLICATION IN THE JOURNAL IS COMPLETELY MY OWN

GENUINE PAPER. IF ANY ISSUE REGARDING COPYRIGHT/PATENT/ OTHER REAL AUTHOR ARISES,

THE PUBLISHER WILLNOT Be LEGALLYRESPONSIBLE. IF ANY OF SUCH MATTERS OCCUR

PUBLISHER MAY REMOVE MY CONTENT FROM THE JOURNAL WEBSITE. FOR THE REASON OF

CONTENT AMENDMENT/OR ANY TECHNICAL ISSUE WITHNO VISIBILITY ON WEBSITE/UPDATES, I

HAVE RESUBMITTED THIS PAPER FOR THE PUBLICATION.FOR ANYPUBLICATION MATTERS OR ANY

INFORMATION INTENTIONALLY HIDDEN BY ME OR OTHERWISE, I SHALL BE LEGALLY

RESPONSIBLE. (COMPLETE DECLARATION OF THE AUTHOR AT THE LAST PAGE OF

THISPAPER/ARTICLE

Abstract

Software engineering refers to the standard used to develop software. Software

development is a human-centric activity that is time consuming and extremely complex.

The concept of artificial intelligence and how to use its various techniques in software

engineering (such as) B. How is artificial intelligence technology related to software

engineering? This white paper describes many artificial intelligence techniques that can

be used to tackle various software development tasks that can extend the nature of the

program. Identifying, validating, and testing software requirements and designs are

important tasks in the software development process and must be taken seriously.

Software activity has the advantages of lower maintenance costs, consistent software

quality, and more customer-friendly software by investing direct efforts in these efforts.

Still, many people working on these projects find that the methods available are very

difficult, out of the ordinary, or simply unsuitable for the task. Artificial intelligence (AI)

has become a common term for self-regulating IT applications, but its importance in

software engineering has received little attention.

This study combines a detailed study of previous studies in this area with five subjective

meetings with software designers who use or need to use AI devices in their daily work,

378 | P a g e

and the current state of development, Evaluate future development potential and the risks

of AI applications. Software engineering. In the software development life cycle, validation

organizes information.

Keywords: Software Engineering, Software Design, Artificial Intelligence Techniques.

1. Introduction

In terms of the number of utilitarian and nonfunctional needs that software serious

frameworks must support, the frameworks we promote these days are becoming

increasingly mind-boggling. The impact of poor quality on the mission of these

frameworks in a variety of basic applications can be disastrous. Furthermore, the cost of

software development determines the total cost of such frameworks.

Over the last two decades, research into the application of artificial intelligence technology

to software development has exploded, resulting in a huge number of projects and

distributions. Various gatherings and diaries have been established to disseminate the

results of the examination in this field. It is advocated that AI techniques be used to reduce

the chance for software frameworks to be marketed and to improve the nature of software

frameworks. However, the examination local region continues to use a significant number

of these AI techniques, with minimal effect on the cycles and instruments used by the

practicing software developer.

Artificial intelligence has become a popular term in both popular and academic circles. The

following are some of the most noteworthy predictions and cutting-edge mythology related

with artificial intelligence: In the most pessimistic possibility, computers would take over

old-style human engineering and improvement jobs, attempt to entirely replace human

efficiency through cunning robotization, and oversee a machine-ruled fascinating modern

lifestyle. In such circumstances, traditional software architects may become obsolete as

machines take control of their projects. Artificial intelligence is now a group of PC-based

programmers who mimic human intelligence in ways to achieve new goals through

decision making, reviewing new data and integrating it into existing information structures,

and using subjective or quantitative data. It is a general term for. Probabilistic evaluation.

Engineers acquire the project's business and specialized requirements at the necessity

gathering stage. The design and work of the not fixed in stone in the design stage based on

the needs received. The solution to the problem is conceived and implemented during the

379 | P a g e

code development stage. The testing step is where analysts run various tests to ensure that

everything goes as planned. The arrangement is sent to the client during the sending stage.

Finally, in the support stage, issues are addressed if necessary or discovered.

2. Software Requirements Specification

Software Requirements Specifications (SRS) is a diagram of future software frameworks.

It is created according to a set of business requirements (CONOPS). The software

requirements specification contains a set of use cases that represent both functional and

non-functional requirements and the client connections that the software must provide to

complete the communication.

The basis of the agreement between the client and the temporary worker or supplier on how

the software works is defined in the software requirements specification (in market-

oriented projects, these tasks are taken over by the promotion and improvement

departments. Will be). Before a clearer framework design is organized, the definition of

software requirements is a thorough examination of the requirements with the aim of

reducing subsequent redesigns. It should also serve as a useful basis for assessing the cost,

risk, and deadlines of an item. When used correctly, software requirements specifications

help prevent software project failures.

The software requirements specification report contains all the requirements that are

important and necessary for your business to grow. To derive requirements, engineers need

to have accurate knowledge of the product they are working on. This is achieved by

maintaining continuous and detailed communication with workgroups and customers

throughout the software development process.

380 | P a g e

Figure: 1. Characteristics of good SRS.

2.1. Software Requirement Specification (SRS) Format

As the name implies, successful software framework development requires complete

specifications and statements of software requirements. Depending on the type of

prerequisite, these criteria might be both practical and non-utilitarian. The link between

diverse clients and project workers is made since it is critical to fully understand the needs

of clients.

Based on the information gathered through collaboration, SRS is developed, which

depicts software requirements that may include alterations and adjustments that must be

made in order to maintain the item's nature and satisfy the needs of the client.

1. Introduction

i) Purpose of this document

ii) Scope of this document

iii) Overview

381 | P a g e

2. Overview

 3. Functional requirements

 4. Interface requirements

 5. Performance requirements

 6.6. Design constraints

 7. Non-functional attributes

 8. Provisional schedule and budget

 9. Appendix

2.2. Software requirements specification vs software design specification

According to Ward and Mellor, there are several advantages to separating SRS and SDS.

SRS and SDS can be confused because software requirements and design processes are

often not performed independently and there is no clear consensus as to whether a

particular aspect refers to SRS or SDS. SRSs involve design decisions. Poor SRSs can

hinder design efficiency. SDSs often involve implementation decisions, causing the same

difficulty. Poorly written SDSs can hinder implementation. The SRS and SDS are

difficult to identify.

An SRS describes what the software will perform but not how. An SRS should specify

the software's outcomes, not its methods. SRS needs to identify all software requirements,

but not project management, design, implementation, or testing. Neither end users nor

analysts are eligible to prepare their own SRS.

Software design specifications (SDS) transform software requirements specifications into

the software structures, components, interfaces, and data required for programming. It

records design process findings and is used to communicate software design information.

Designers create SDSs.

First, the system can be described in two ways. SRS describes a system in technical terms

rather than computer hardware or software technology, so it applies regardless of the

technology used to implement the system. SDS describes a system implemented by a

particular technology. Then, by splitting SRS and SDS, you can split long process

activities into two smaller tasks: analyzing and defining software requirements and

creating and defining software designs. Achieve SRS and SDS consistency.

3. Artificial Intelligence Techniques

382 | P a g e

Improvements to the master framework: - Expert frameworks manage the arranging

interaction using information rather than information. Information engineers create

frameworks by eliciting knowledge from experts, coding that information in a logical

structure, approving the information, and then designing a framework using a variety of

tools.

The following are the primary stages of the expert system development process:

▪ Preparation

▪ Information gathering and analysis

▪ Conceptualizing knowledge

▪ Programming

▪ Validation of information

▪ Assessment of the system

Possibility appraisal, asset distribution, assignment staging, and booking requirements

study are all part of the arranging step. Gathering information is the most important step in

improving ES. During this phase, information engineers work with area managers to

protect, organize, and investigate ES space data. The goal of information investigation is

to break down and organize the data. Obtainable during the information gathering stage.

We move on to the information design step after the information evaluation is completed.

We are nearing the end of the design stage, and we have knowledge definition, natty gritty

design, and a decision on how to treat information, as well as a decision on an improvement

tool. Examine whether it supports your pre-determined system, internal reality structure,

and simulated connecting point. In the Expert System Development Life Cycle, coding this

stage takes the least amount of time. Coding, designing experiments, commenting code,

nurturing User's manual, and setup instructions are all included.

383 | P a g e

Figure: 2. The Artificial Intelligence Techniques.

3.1. Artificial Intelligence in Software Engineering

Software engineering is the application of formal engineering principles to the design and

development of software. Software engineering is basically responsible for software

development. Software development is a long process that involves multiple phases and

requires the use of executable code. Humans have long written code to improve software,

but no machine can beat it. AI refers to the process of creating intelligent machines that

can perform human-like tasks.. Artificial intelligence techniques can be used to help with

a wide range of software development tasks. As a result, there is significant opportunity

for working on all phases of the SDLC (Software advancement life cycle).

4. Requirement Validation

The requirements approval phase is the final step in the requirements engineering process.

The approval of requirements is completed to ensure that they are complete and

predictable, as specified by the client. The software requirements approval process

identifies software requirements specification errors (SRS). During the requirements

approval process, ambiguities and discrepancies in requirements are resolved [21].

384 | P a g e

These stages have a limited number of advances that verify the requirements; the

methods are as follows:

▪ Checks for consistency

▪ Checks for culmination

▪ Checks for legality

▪ Verification of authenticity

▪ Checks for ambiguity

▪ Consistency.

These checks are carried out during the requirements approval stage to ensure the

following:

▪ The requirements should be predictable with respect to one another, which means

that no two requirements should compete or contradict one another.

▪ The criteria should be essentially achievable.

▪ The requirements must be fulfilled in every way.

▪ The requirements should include all relevant information.

▪ The requirements must address the framework's true requirements.

▪ The partners' criteria should be realistic.

▪ Each requirement should be presented in a way that prevents multiple

interpretations.

➢ Challenges To Requirements Validation

Validating requirements using a method or framework is difficult. Due to a lack of skilled

technical employees, training, or knowledge & skills, many firms do requirements

validation "ad-hoc." Developers prioritise testing.

4.1. Requirement Validation Techniques

Using Requirement validation procedures ensures that user specifications are complete and

the SRS document is error-free. Industry practises requirements prototyping, reviews,

viewpoint-oriented validation, and use-case based modelling. This paper discusses several

strategies.

4.1.1. Inspections

385 | P a g e

Fagan 1976 introduced inspections as a way to detect problems. Inspections can discover

50-90% of flaws, according to research. Manual inspections verify work-products. A small

group of peers performs it to confirm it's correct and meets product specs. ISO/IEC 15504

and CMMI suggest inspections for requirements validation.

4.1.2. Requirements Prototyping

Requirements Prototyping is a key tool for testing user needs because it represents a

system's shell. Prototypes validate requirements by offering system knowledge. Prototypes

help validate requirements when you're not sure you have a good set. Literature discusses

throw-away and evolutionary prototypes.

"Throwaway prototypes" identify misunderstood needs. After user feedback, throwaway

prototypes are discarded after meeting initial requirements. The prototype's input helps the

development team and clients resolve requirements issues. If both parties agree on the

criteria, the prototype is discarded and the requirements are added to SRS.

"Evolutionary prototyping" is based on settled criteria and subject to software quality

limitations. User input refines evolutionary prototypes based on original criteria.

4.1.3. Requirements Testing

Requirements testing validates the SRS, not the software system. Test cases are generated

for all provided criteria, writing time, and/or economic resources. This expense is part of

requirements validation. Requirements testing helps identify confusing or incomplete

requirements by indicating a problem with a requirement if a test case fails.

The test cases used to test the requirements could eventually be utilised to test the whole

system. TCD inspections are test case based.

Tony Gorschek and Nina Fogelstrom proposed test-case-based software requirements

inspection. This technique involves writing test cases to test system requirements and

testing them.

4.1.4. Viewpoint-oriented Requirements Validation

Researchers have known for decades that more information sources improve knowledge.

Different sources and witnesses may have different memories. This ensures the

requirements' completeness and accuracy. To use this approach, compare and examine

386 | P a g e

different viewpoints systematically. This method aids elicitation. Viewpoint-oriented

validation compares many views and resolves discrepancies.

5. The Role of AI Techniques in Software Development Activities

➢ The Development Process

• Software requirements analysis

i. Requirement Engineering (RE)

Within a group of documents, requirements are initially expressed in natural language.

These documents are typically "the unresolved perspectives of a group of individuals and

will, in most situations, be incomplete, inconsistent, conflicting, not prioritised, and

frequently overblown, beyond actual needs." This phase's major activities include

requirement elicitation, collection, and analysis, as well as their transformation into a less

ambiguous representation.

The following are some of the issues that have arisen during this phase:

▪ Unclear requirements

▪ Incomplete, unclear, imprecise requirements

▪ Incompatible requirements

▪ Volatile needs

▪ Inter-stakeholder communication is poor.

▪ Unmanageable requirements.

ii. Processing Natural Language Requirements NLR

The system is not implemented, but a framework for converting specifications written in

NL (English) to formal specifications (TELL) has been introduced. The NL2ACTL system

was introduced with the goal of translating NL sentences created to describe the

functionality of reactive systems into action-based temporal logic statements. Another

system, FORSEN, was created with the goal of translating NL requirements into the formal

specification language VDM. This method was able to detect the ambiguity of the NL

requirement. A general methodology for automatically developing OO models from NL

requirements using language tools was presented. NLOOPS, aimed at creating OO

specifications from NL requirements, was developed using the Large Object-Based

Language Interactor Translator Analyzer (LOLITA) NLP system. An approach has been

developed to connect the linguistic world with the conceptual world through a series of

387 | P a g e

linguistic patterns. Another system, ClassModelBuilder (CMBuilder), was built as an NL-

based CASE tool to create UML-defined class diagrams from NL requirements papers.

iii. Risk Management

Risk management processes are a means of predicting risks and implementing procedures

to prevent and / or mitigate the impact of those risks. The risk management process begins

in the analysis phase of the software development life cycle. However, the actual risk

management process continues throughout the product development phase. With automatic

programming techniques that make data structures adaptable, AI-based systems have no

risk management strategy. Automatic programming is the development of programs on a

computer, usually based on higher and easier-to-specify criteria than traditional

programming languages. The goal is to make the specification smaller, easier to write,

easier to understand (closer to the concept of an application), and less error prone than a

programming language.

6. Conclusion

Artificial intelligence techniques that are used to automate necessity engineering exercises

are examined. The overall goal is It may be deduced that using AI techniques or AI

calculations to necessity engineering is not a straightforward task. AI calculations, like

necessity arrangements, necessitated pre-marked prepared data. However, it is commonly

assumed that physically grouping requirements is a time-consuming task. Unlike

traditional manual order procedures, AI techniques rely on the display of framework. For

software necessity characterization, another Deep learning model, such as Intermittent

Neural Network, can be used.

Software engineering aids us in the development of software products; yet, adhering to

software engineering standards takes a long time. By incorporating AI approaches into the

software development process, the item's quality can be improved. We can kill risk

appraisal carefully while saving time in software development and developing a successful

product by using AI-based frameworks with the aid of robotized apparatus or computerised

programming apparatus. We can reduce the time it takes to improve software using

Artificial Intelligence approaches in Software Engineering.

388 | P a g e

For software engineers who ignore the potential of AI in the software development life

cycle and stick to routine tasks, automated schedules increase reliability and cost, and risk

being replaced in the long run and losing their intended position. there is. To compete with

artificial intelligence, software designers need to be more innovative and smarter in the

future. A software development company that uses AI to identify software products faster

and more accurately, ignoring the acceptance of AI risks driven out of the market by more

innovative competitors. Artificial intelligence is a fast-growing future innovation in

software engineering, and early adopters take it seriously.

7. References

1. Acemoglu D, Restrepo P. Artificial intelligence, automation and work (no. w24196):

National Bureau of Economic Research; 2018.

2. Dhar V. The future of artificial intelligence. Big Data Vol. 4 , N. 1; 2016.

3. Fetzer JH. Artificial intelligence: Its scope and limits (Vol. 4): Springer Science &

Business Media; 2012.

4. Friedrich O, Racine E, Steinert S, Pömsl J, Jox RJ. An analysis of the impact of brain-

computer interfaces on autonomy. Neuroethics. 2018:1–13.

5. Hameed Ullah Khan, Ikram Asghar, Shahbaz Ahmad AK Ghayyur, and Mohsin Raza.

An empirical study of software requirements verification and validation techniques

along their mitigation strategies. Asian Journal of Computer and Information Systems,

3(3), 2015

6. Hany H Ammar, Walid Abdelmoe, and Mohamed Salah Hamdi,”Software Engineering

Using Artificial Intelligence Techniques: Current State and Open Problems”, 2010.

7. Helbing D, Frey BS, Gigerenzer G, Hafen E, Hagner M, Hofstetter Y, et al. Will

democracy survive big data and artificial intelligence? In: Towards digital

enlightenment. Cham: Springer; 2019. p. 73–98.

8. Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requirements engineering. Springer,

2017.

9. Kietzmann J, Pitt LF. Artificial intelligence and machine learning: what managers need

to know. Bus Horiz. 2020;63(2):131–3.

10. Lu H, Li Y, Chen M, Kim H, Serikawa S. Brain intelligence: go beyond artificial

intelligence. Mobile Netw Appl. 2018;23(2):368–75.

11. Makridakis S. The forthcoming artificial intelligence (AI) revolution: its impact on

society and firms. Futures. 2017;90:46–60.

389 | P a g e

12. Masooma Yousuf and M Asger. Comparison of various requirements elicitation

techniques. International Journal of Computer Applications, 116(4), 2015.

13. Niyaz Q, Sun W, Javaid AY. A deep learning based DDoS detection system in software-

defined networking (SDN). arXiv preprint. arXiv. 2016;1611:07400.

14. Paola Spoletini and Alessio Ferrari. Requirements elicitation: a look at the future

through the lenses of the past. In 2017 IEEE 25th International Requirements

Engineering Conference (RE), pages 476–477. IEEE, 2017.

15. Sourour Maalem and Nacereddine Zarour. Challenge of validation in requirements

engineering. Journal of Innovation in Digital Ecosystems, 3(1):15–21, 2016.

16. Sven Feja, Soren Witt, and Andreas Speck. Bam: A requirements validation and

verification framework for business process models. In 2011 11th International

Conference on Quality Software, pages 186–191. IEEE, 2011.

17. Syed Waqas Ali, Qazi Arbab Ahmed, and Imran Shafi. Process to enhance the quality

of software requirement specification document. 2018 International Conference on

Engineering and Emerging Technologies (ICEET), pages 1–7, 2018.

18. Wiegers, Karl; Beatty, Joy (2013). Software Requirements, Third Edition. Microsoft

Press.

19. William Gryffyth StClair and Sumner Augustine StClair. Automated management of

software requirements verification, February 3 2015.

20. YT Tiky. Software development life cycle. Hongkong: THe Hongkong University of

Science and Technology, 2016.

Author’s Declaration

I as an author of the above research paper/article, hereby, declare that the content of this paper is

prepared by me and if any person having copyright issue or patent or anything otherwise related

to the content, I shall always be legally responsible for any issue. For the reason of invisibility of

my research paper on the website/amendments/updates, I have resubmitted my paper for

publication on the same date. If any data or information given by me is not correct I

shall always be legally responsible. With my whole responsibility legally and formally I have

intimated the publisher (Publisher) that my paper has been checked by my guide(if any) or

expert to make it sure that paper is technically right and there is no unaccepted plagiarism

and the entire content is genuinely mine. If any issue arise related to Plagiarism / Guide

Name / Educational Qualification/Designation/Address of my university/college/institution/

Structure or Formatting/ Resubmission / Submission /Copyright /Patent/Submission for any higher

degree or Job/ Primary Data/Secondary Data Issues, I will be solely/entirely responsible for any

legal issues. I have been informed that the most of the data from the website is invisible or shuffled

390 | P a g e

or vanished from the database due to some technical fault or hacking and therefore the process of

resubmission is there for the scholars/students who finds trouble in getting their paper on the

website. At the time of resubmission of my paper I take all the legal and formal responsibilities,

If I hide or do not submit the copy of my original documents (Aadhar/Driving License/Any

Identity Proof and Address Proof and Photo) in spite of demand from the publisher then

my paper may be rejected or removed from the website anytime and may not be consider for

verification. I accept the fact that as the content of this paper and the resubmission legal

responsibilities and reasons are only mine then the Publisher (Airo International Journal/Airo

National Research Journal) is never responsible. I also declare that if publisher finds any

complication or error or anything hidden or implemented otherwise, my paper may be

removed from the website or the watermark of remark/actuality may be mentioned on my

paper. Even if anything is found illegal publisher may also take legal action against me

Jyoti Sisodia

Dr. Ashish Chourasia

