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ABSTRACT 

Hypergeometric functions are taken into account in the theory of special functions, in which case the 

representations of the functions will be hypergeometric series. The special function theory has 

historically been used extensively in many fields of mathematical physics, economics, statistics, 

engineering, and many other scientific disciplines. This work is focused on the investigation of the k-

analogue of Gauss hypergeometric functions by the Hadamard product, which was inspired by some 

recent extensions of the k-analogue of gamma, the Pochhammer symbol, and hypergeometric functions. 

Additionally, this function yields convergence features. A unique function utilised in mathematics is the 

Gaussian function, commonly referred to as the common hypergeometric function. The hypergeometric 

series, which also includes numerous other special functions as specific or limiting examples, serves as 

a representation of this function. It is the linear solution of a second-order ordinary differential 

equation (ODE). Any linear ODE of the second order with three regular singular points can be 

transformed using this equation. In this research, we talk about the invention of a few basic 

hypergeometric functions. Understanding the importance of the collection of hypergeometric functions 

in various domains is the goal of this work. This paper's emphasis is on providing background 

knowledge. New, previously unpublished equations that are cohesively weaved into the body of current 

mathematical literature make up a large amount of the content. 

Keywords: Hypergeometric, Function, Mathematical, Differential, Equations, etc. 

1. INTRODUCTION 

More than 200 years have passed since the first 

hypergeometric functions with one variable 

were studied. They have been studied by Euler, 

Gauss, Riemann, and Kummer, and their 

findings are available. Schwarz and Goursat 

investigated the specific characteristics of the 

variables, whereas Barnes and Mellin studied 

the integral representations of their variables. 

The renowned Gauss hypergeometric equation 

is widely employed in mathematical physics 

because many well-known partial differential 

equations can be reduced to Gauss' equation by 

separating the variables. There are three ways 

to describe hypergeometric functions: as 

functions represented by series whose 

coefficients satisfy specific recursion 

properties; as solutions to a set of differential 

equations that are, in the right sense, holonomic 
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and have mild singularities; or as functions 

defined by integrals like the Mellin-Barnes 

integral. Each of these approaches has Benefits 

and drawbacks. This interaction is well studied 

and understood for hyper geometric functions 

with one variable for many years. On the other 

hand, when there are several variables, it is 

possible to expand each of these techniques; 

however the outcomes may vary slightly 

depending on which one you select. 

As a result, there is no universally accepted 

definition of what a multivariate 

hypergeometric function is. One such example 

is the concept that Horn introduced of 

multivariate hypergeometric series expressed in 

terms of the coefficients of the series. As a 

result of the recursions that they satisfy, a 

system of partial differential equations is 

generated. It has come to our attention that for 

more than two variables, this system does not 

necessarily need to be holonomic; in other 

words, the space of local solutions may be of 

infinite dimensionality. On the other hand, 

expanding this system of PDEs into a 

holonomic system can be done in a natural 

fashion. In the case of two variables, only the 

relation between these two systems can be 

grasped in sufficient detail. Even in the case of 

the classical Horn, Appell, Pochhammer, and 

Lauricella, multivariate hypergeometric 

functions, it was not until the 1970s and 1980s 

that an attempt was made by W. Miller Jr. and 

his collaborators to study the Lie algebra of 

differential equations satisfied by these 

functions and their relationship with the 

differential equations arising in mathematical 

physics. 

2. CONCEPT OF BASIC 

HYPERGEOMETRIC SERIES 

The Gaussian or regular hypergeometric 

function 2F1(a,b;c;z) is an example of a 

specific function that is represented by the 

hypergeometric series in the subject of 

mathematics. As specialised or limiting 

instances, this series also includes a sizable 

number of extra special functions. It is the 

linear solution of a second-order ordinary 

differential equation (ODE). Any linear ODE of 

the second order with three regular singular 

points can be transformed using this equation. 

2.1 History 

John Wallis first used the term "hypergeometric 

series" in his work Arithmetica Infinitorum, 

which was published in 1655. The studies of 

Ernst Kummer (1836) and Bernhard Riemann's 

essential description of the hypergeometric 

function by terms of the differential equation it 

satisfies were both conducted in the nineteenth 

century. Euler examined hypergeometric series, 

but Gauss provided the first comprehensive and 

systematic analysis (1813). The studies of Ernst 

Kummer were among those conducted in the 

20th century (1836). Riemann showed that the 

three regular singularities of the second-order 

differential equation (in z) for the 2F1 that was 

studied on the complex plane could be 

described. The Annals of the Mathematical 

Society publication published Riemann's 

findings. 

When the solutions are algebraic functions, H. 

A. Schwarz identified these instances and 

created a list of them. 

➢ The hypergeometric series of 

equations 

The series for the situation where defines the 

hypergeometric function. |z|<1. 

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) = ∑
(𝑎)𝑛(𝑏)𝑛

(𝑐)𝑛

𝑧𝑛

𝑛!
∞
𝑛=0  
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assuming c is not equal to 0 or one of the 

following: -1, -2, or Remember that if either "a" 

or "b" can be represented as a negative integer, 

the series ends. 

The Pochhammer sign is described as follows:

(𝑥)n=1                                         if n>0 

𝑥(𝑥 + 1) … (𝑥 + 𝑛 − 1))if n>0 

Any path in the complex plane outside of the 

branch points of 0 and 1 can be used to carry 

out the analysis for different complex values of 

z. 

2.2 Special cases 

Numerous additional mathematical functions 

can be expressed in terms of the 

hypergeometric function, and limiting 

examples of it can also be used to do so. Typical 

examples include the following.

 

𝑙𝑛(1 + 𝑧) = 𝑧2𝐹1(1,1, ; 2; −𝑧) 

(1 − 𝑧)-a=2𝐹1(𝑎, 𝑏; 𝑏; 𝑧) 

𝑎𝑟𝑐𝑠𝑖𝑛 𝑧 =  𝑧2𝐹1 (
1

2
;

1

2
;

3

2
; 𝑧2) 

The confluent hypergeometric function, 

commonly referred to as Kummer's function, 

can be written as a limit of the hypergeometric 

function. 

𝑀(𝑎, 𝑐, 𝑧) = 𝑙𝑖𝑚𝑏→∞2𝐹1(𝑎, 𝑏; 𝑐; 𝑏-1𝑧) 

Its bounds can therefore be stated as any 

functions that are essentially special examples 

of it. Bessel is one such instance of such a 

function.  

functions. This article contains the 

overwhelming majority of the mathematical 

and physical functions that are frequently 

required.  

His idea of partitions, which he invented and 

made famous, has in a natural manner led to 

series containing components of the form. Euler 

is credited with developing and popularizing 

this theory. 

(𝑙 − 𝑎𝑞)(𝑙 − 𝑎𝑞2 ). . . . (𝑙 − 𝑎𝑞n) 

Heine [E. Heine; 1878] conducted the first 

systematic study of these so-called "basic 

hypergeometric series" or "Eulerian series." 

Numerous early findings are attributed to Euler, 

Gauss, and Jacobi. Bailey [W.N. Bailey, 1935], 

who has contributed significantly in his own 

right, offers a succinct summary. It is vital to 

recognize the contributions of Hahn and Sears 

to the later, more methodical development of 

the theory. for both expositions and references 

that are incredibly thorough. A novice in the 

field could find the topic of fundamental hyper 

geometric series to be a little scary due to its 

extensive development, plenty of potent and 

universal conclusions, and concise expression. 

But given the astounding nature of some of the 

discoveries and their unexpected proximity to 

the earth's surface, it wouldn't be hard for 
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someone to be motivated to carry out their own 

nearly unexplored investigation. 

It seemed inevitable that, when we tackled the 

subject in this way, we would end up unearthing 

a lot of knowledge that even the early workers 

in the field had. However, it was encouraging 

to observe that many of the discoveries made in 

this way seemed novel and valuable, whereas 

earlier discoveries were left behind as 

convenient by-products. 

The analysis of a power series in t with 

coefficients that each has a single Eulerian 

factor in the numerator and the denominator has 

been the focus of our research at least up to this 

point. This specific action, 

𝐹{𝑎, 𝑏;  𝑡) = 1 + 
(1 − 𝑎𝑞)

(1 − 𝑏𝑞)
𝑡 +

(1 − 𝑎𝑞)(1 − 𝑎𝑞2)

(1 − 𝑏𝑞)(1 − 𝑏𝑞2)
𝑡2 + ⋯ 

is an exceptional instance of the Heine series It 

is capable of satisfying first-order linear 

difference equations in each of the three 

arguments, such as  

(1 −  𝑡)𝐹{𝑎, 𝑏;  𝑡) =  (1 −  𝑏) +  {𝑏 −  𝑎𝑡𝑞)𝐹(𝑎, 𝑏;  𝑡𝑞) 

3. BASIC HYPERGEOMETRIC SERIES 

As a result of the relatively straightforward q-

series that have been taken into consideration 

up until this point, it has not been necessary for 

us to develop a condensed notation for q-series 

that involve multiple parameters. Remember 

that the technical definition of the 

hypergeometric series is: 

𝐹(𝑎, 𝑏; 𝑐; 𝑧) ≡2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) ≡ 2𝐹1 [
𝑎, 𝑏

𝑐
; 𝑧] = ∑

(𝑎)𝑛(𝑏)𝑛

𝑛!(𝑐)𝑛
𝑧𝑛∞

𝑛=0  

In this case, it is assumed that c 0, -1, -2... so 

that none of the terms in the series' 

denominators include zero factors. The series 

will then be able to be written as follows: When 

|z| 1 for the Gauss series, and for |z|=1 when 

Re(c - a - b) > 0, absolute convergence takes 

place. Heine was responsible for starting the 

series. 

𝜙(𝛼, 𝛽, 𝛾, 𝑞, 𝑧)  = 2𝜙1(𝑞 α , 𝑞β ;  𝑞 γ ;  𝑞, 𝑧) 

With 

2𝜙1(𝑎; 𝑏; 𝑐; 𝑞, 𝑧) ≡2𝜙1[
𝑎, 𝑏

𝑐
; 𝑞, 𝑧] ∑

(𝑎;𝑞)𝑛(𝑏;𝑞)𝑛

(𝑞;𝑞)𝑛(𝑐;𝑞)𝑛
𝑧𝑛∞

𝑛=0  

where it is taken for granted that γ= −𝑚 and c≠ 

q -m, where m = 0, 1…. Heine's series converges 

absolutely for |z|<1 when |q|<1, and it is a q-

analogue of Gauss' series because, by applying 

and setting a formal termwise limit,  

𝑙𝑖𝑚 q→1
-
2𝜙1(𝑞 α , 𝑞β ;  𝑞 γ ;  𝑞, 𝑧)  = 2𝐹1(𝛼, 𝛽;  𝛾;  𝑧) 

Heine's series is often referred to as the 

fundamental hypergeometric series or 

qhypergeometric series in light of the base𝑞. 

We prefer to use the 2𝜙1(𝑎, 𝑏, 𝑐, 𝑞, 𝑧) notation 

instead of Heine's 𝜙(𝑎, 𝑏, 𝑐, 𝑞, 𝑧) notation 

because when 0 <  |𝑞|  < 1, the limit instances 

of Heine's series correspond to setting 

𝛼, 𝛽, 𝑜𝑟 𝛾 →  ∞ to zero in the corresponding 

places in the z-axis. 
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The (generalised) hypergeometric series with 

the parameters 𝑟 numerator a1... ar and s 

denominator b1... bs is (officially) defined by 

r𝐹s(𝑎1, 𝑎2, … . 𝑎r; 𝑏1… . 𝑏s; 𝑧) ≡ r𝐹s   [
𝑎1𝑎2 … 𝑎𝑟

𝑏1 … . 𝑏𝑠
; 𝑧] = ∑

(𝑎1)𝑛(𝑎2)𝑛…(𝑎𝑟)𝑛

𝑛!(𝑏1)𝑛….(𝑏𝑠)𝑛
𝑧𝑛∞

𝑛=0  

and an rϕsbasic hypergeometric series are described by 

r𝜙s(𝑎1, 𝑎2, … . 𝑎r; 𝑏1… . 𝑏s; 𝑧) ≡ r𝜙s   [
𝑎1𝑎2 … 𝑎𝑟

𝑏1 … . 𝑏𝑠
; 𝑞, 𝑧] = ∑

(𝑎1,𝑎2…𝑎𝑟;𝑞)𝑛

(𝑞,𝑏1,….,𝑏𝑠;𝑞)𝑛
𝑧𝑛∞

𝑛=0 [(−1)𝑛𝑞
(

𝑛

2
)
]1+𝑠−𝑟𝑧𝑛 

Where (
𝑛
2

) 𝑛(𝑛 −  1)/2we used the concise 

notation (𝑎1, 𝑎2, . . . , 𝑎r;  𝑞)n =

 (𝑎1;  𝑞)n(𝑎2;  𝑞)n · · · (𝑎r;  𝑞)n[Gasper; 1990] 

4. HYPERGEOMETRIC FUNCTION 

A hypergeometric function is the sum of a 

hypergeometric series, which is defined as 

follows. 

Definition 1: A series Ʃcn is called 

hypergeometric if the ratio 
𝑐𝑛+1

𝑐𝑛
 is a rational 

function of 𝑛. This indicates that the factor z 

arises because the polynomials involved do not 

have to be monic. The factor (n + 1) in the 

denominator is useful in the sequel. This factor 

may or may not be the result of the 

factorization. If not, one of the components (n 

+ ai) in the numerator can compensate for this 

extra factor (select ai = 1 for some i)  

Iteration results in 

𝑐𝑛 =
(𝑎1)𝑛(𝑎2)𝑛 … (𝑎𝑝)

𝑛𝑧𝑛

(𝑏1)𝑛(𝑏2)𝑛 … (𝑏𝑞)
𝑛𝑛!

𝑐0𝑛 = 1,2 … .. 

Remember how the shifted factorial (a)n is well-defined by  

(𝑎)n∶=  𝑎(𝑎 +  1)(𝑎 + 2) · · · (𝑎 +  𝑛 −  1), 𝑛 =  1, 2, 3, . .. and (𝑎)0∶=  1 

Hence, 

∑ 𝑐𝑛 = 𝑐0 ∑
(𝑎1)𝑛(𝑎2)𝑛 … (𝑎𝑝)𝑛

(𝑏1)𝑛(𝑏2)𝑛 … . (𝑏𝑞)𝑛

𝑧𝑛

𝑛!

∞

𝑛=0

∞

𝑛=0

 

Definition 2:A hypergeometric series can be used to define the hypergeometric function pFq(a1, a2,..., 

ap; b1, b2,..., bq; z), which is written as 

p𝐹q (
𝑎1

𝑏1

𝑎2….𝑎𝑝

𝑏2…𝑏𝑞

; 𝑧)  

= ∑
(𝑎1)𝑛(𝑎2)𝑛 … (𝑎𝑝)𝑛

(𝑏1)𝑛(𝑏2)𝑛 … . (𝑏𝑞)𝑛

𝑧𝑛

𝑛!

∞

𝑛=0
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It goes without saying that the parameters have 

to be set up in such a way that the denominator 

factors in the terms of the series are never zero. 

If one of the numerator parameters, ai, is equal 

to a nonnegative number−𝑁, then the 

hypergeometric function is a polynomial in 𝑧. 

𝑁 is an integer that cannot be negative. If that 

is not the case, then the hyper geometric series 

has a radius of convergence that is given by 

𝑝= {

∞
1
0

  𝑖𝑓    
𝑖𝑓
𝑖𝑓

𝑝 < 𝑞 + 1
𝑝 = 𝑞 + 1
𝑝 > 𝑞 + 1

 

This directly follows from the ratio test. Indeed, we have 

lim
𝑛→∞

(
𝑐𝑛+1

𝑐𝑛
)= {

0
ǀ𝑧ǀ
∞

  𝑖𝑓    
𝑖𝑓
𝑖𝑓

𝑝 < 𝑞 + 1
𝑝 = 𝑞 + 1
𝑝 > 𝑞 + 1

 

The circumstance that |𝑧|  =  1 is of particular 

significance when𝑝 =  𝑞 +  1. If Re (Pbi Paj) 

> 0, the hypergeometric sequence 

q+1𝐹q(𝑎1, 𝑎2, . . . , 𝑎q+1;  𝑏1, 𝑏2, . . . , 𝑏q;  𝑧) with 

|𝑧|  =  1 converges perfectly. 

If |z| = 1 with z≠1 and−1 <Re (Ʃbi-Ʃaj)≤ 0, 

the series conditionally converges, and if Re 

(Ʃbi-Ʃaj)≤ −1, the series diverges. 

A generalized hyper geometric function is 

sometimes used to describe the most universal 

hyper geometric function, pFq. The term "hyper 

geometric function" then denotes the unique 

case. 

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =2𝐹1(𝑎 𝑏
𝑐

; 𝑧)= ∑
(𝑎)𝑛(𝑏)𝑛

(𝑐)𝑛

𝑧𝑛

𝑛!
∞
𝑛=0  

4.1 Generalized hypergeometric function 

A generalized hypergeometric 

function p𝐹q(𝑎1… . . 𝑎p; 𝑏1… . 𝑏q; 𝑥)is a function 

that can be expressed as a hypergeometric 

series, that is, a series for which the ratio of 

succeeding terms can be expressed. 

𝑐𝑘+1

𝑐𝑘
=

𝑃(𝑘)

𝑄(𝑘)
=

(𝑘 + 𝑎1)(𝑘 + 𝑎2) … (𝑘 + 𝑎𝑝)

(𝑘 + 𝑏1)(𝑘 + 𝑏2) … (𝑘 + 𝑏𝑞)(𝑘 + 1)
 𝑥. 

(The presence of the k+1 component in the 

denominator is due to historical reasons for 

notation.) 

The 

function 2𝐹1

(𝑎; 𝑏; 𝑐; 𝑥) 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑝 = 2, 𝑞 = 1is 

the first hypergeometric function to be 

examined (and, in general, emerges the most 

frequently in physical issues), and as a result, is 

frequently referred to as "the" hypergeometric 

equation or, more specifically, Gauss's 

hypergeometric function. To make matters 

even more confusing, the phrase 

"hypergeometric function" is used less 

commonly to indicate "closed form," and the 

term "hypergeometric series" is occasionally 

used to denote "hypergeometric function." Both 

of these usages are examples of how the terms 

can be interchanged. 

The hypergeometric functions are solutions to 

the hypergeometric differential equation, which 

has a regular singular point at the origin. The 
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origin is also the location of the regular singular 

point in the equation. Using the hypergeometric 

differential equation as a starting point, develop 

the hypergeometric function. 

𝑧(1 − 𝑧)𝑦’’ + [𝑐 − (𝑎 + 𝑏 + 1)𝑧]𝑦’ − 𝑎𝑏𝑦 = 0 

apply the Frobenius technique to condense it to 

∑{(𝑛 + 1)(𝑛 + 𝑐)𝐴𝑛+1 − [𝑛2 + (𝑎 + 𝑏)𝑛 + 𝑎𝑏]𝐴𝑛}𝑧𝑛 = 0

∞

𝑛=0

 

giving the corresponding equation 

An+1= 
(𝑛+𝑎)(𝑛+𝑏)

(𝑛+1)(𝑛+𝑐)
𝐴𝑛 

Associating this with the Ansatz series 

y=∑ 𝐴𝑛𝑧𝑛∞
𝑛=0  

the answer is then provided 

𝑦 = 𝐴0[1+ 
𝑎𝑏

1!𝑐
 𝑧 +

𝑎(𝑎+1)𝑏(𝑏+1)

2!𝑐(𝑐+1)
𝑧2 + ⋯ ] 

This is the so-called regular answer, indicated by 

 

This converges if the given value is not a 

negative integer for all on the unit circle for the 

given value. A symbol for a Pochhammer can 

be found here. 

The following expression provides a conclusive 

answer to the hypergeometric differential 

equation: 

The hypergeometric series converges for all 

arbitrary values, as well as real values and 

arbitrary values 𝑧 = ±1 if 𝑐 > 𝑎 + 𝑏 

Derivatives of 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧)are assumedby 

[Magnus and Oberhettinger 1949] 

𝑑2𝐹1(𝑎,𝑏;𝑐;𝑧)

𝑑𝑧
=

𝑎𝑏

𝑐
2F1(𝑎 + 1, 𝑏 + 1; 𝑐 + 1; 𝑧) 

= 
𝑎𝑏

𝑐
2𝐹1(𝑎 + 1, 𝑏 + 1; 𝑐 + 1; 𝑧) 

𝑑22F1(𝑎, 𝑏; 𝑐; 𝑧)

𝑑𝑧2
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=
𝑎(𝑎+1)𝑏(𝑏+1)

𝑐(𝑐|+1)
2𝐹1(𝑎 + 2, 𝑏 + 2; 𝑐 + 2; 𝑧) 

Functions of hypergeometry with specific arguments can be reduced to functions of elementary 

geometry, for instance. 

2𝐹1(1, 1; 1; z) = 
1

1−𝑧
 

2𝐹1(1, 1; 2; z) = 
1𝑛(1−𝑧)

𝑧
 

2𝐹1(1, 2; 1; z) = 
1

(1−𝑧)2 

2𝐹1(1, 2; 2; z) =
1

 1−𝑧
 

5. HYPERGEOMETRIC SERIES AND 

DIFFERENTIAL EQUATION 

Equations:The Gamma Function, in addition 

to the Pochhammer Symbol. We are reminded 

that the integral can be used to define the 

Gamma function, which is denoted by the 

symbol (s). 

Γ(𝑠) = ∫ 𝑒−𝑡𝑡8−1𝑑𝑡
∞

0

 

A holomorphic function in the half-plane Re(s) 

> 0 is defined by the integral. In addition, it 

answers the functional equation. 

Г(𝑠 + 1) = 𝑠Г(𝑠);   𝑅𝑒(𝑠) > 0 

Hence, since Γ(1)  =  1, we have Γ(𝑛 +  1)  =

 𝑛! for all  ∈ ℕ. We can expand to a 

meromorphic function in the entire complex 

plane with simple poles at non-positive 

integers. For instance, in the strip {−1 <

𝑅𝑒(𝑠) ≤  0}, we define 

Г(𝑠) =
Г(𝑠 + 1)

𝑠
 

Definition 3: Given α ∈ℂ\ℤ≤0 and k ∈ℕThe Pochhammer symbol is defined: 

(𝑎)k=
Г(𝑎+𝑘)

Г(𝑎)
 

5.1 Hypergeometric Series 

 Let 𝑛 =  (𝑛1, . . . , 𝑛r)  ∈  ℕr be an r-tuple of 

non-negative integers.  

Given 𝑥 =  (𝑥1, . . . , 𝑥r)∈ℂr, 

We shall indicate the power product by 𝑥n. 

𝑥n := xn1
1 · · · xnr

r , 

and by ej the j-th standard basis vector in Qr .  

Definition 4: A formal multivariate power 

series 

𝐹(𝑥1, … , 𝑥𝑟) = ∑ 𝐴𝑛𝑥𝑛

𝑛𝜖ℕ𝑟

 

is only considered to be (Horn) hyper geometric 

if the quotient is valid for all j = 1,..., r. 

𝑅𝑗(𝑛) ≔
𝐴𝑛+𝑒𝑗

𝐴𝑛
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A rational function of 𝑛 =  (𝑛1.  . . 𝑛r) 

Example: Assume we want 𝑅(𝑛)  =  𝑅1(𝑛) to 

be a constant function and set r = 1. Then, for 

some, An = A0
cn; c ∈ℂ and therefore 

𝐹(𝑥) = 𝐴0 ∑ 𝑐𝑛𝑥𝑛

∞

𝑛=0

=
𝐴0

1 − 𝑐𝑠
 

As a result, in its most basic form, a 

hypergeometric series is just a geometric series.  

5.2 Differential Equations 

The fact that the coefficients of a 

hypergeometric series recur implies that these 

coefficients are formal solutions to either 

ordinary or partial differential equations. In the 

first step of this process, we will derive the 

ordinary differential equation of the second 

order that is satisfied by Gauss' hypergeometric 

function. The following notation will be utilised 

for the rest of this discussion: We will use 𝑥 for 

the differentiation operator 𝑑/𝑑𝑥 when dealing 

with functions that have just one variable𝑥. 

When dealing with functions that have several 

variables, such as 𝑥1, . . . , 𝑥n, we will write j for 

the partial differentiation operator ∂/∂xj. In 

addition to this, we will look at the Euler 

operators: 

𝜃x∶=  𝑥𝜕x ;  𝜃j: =  𝑥j𝜕j 

Now consider the Gauss hyper geometric 

series, where F is substituted for 2F1 to simplify 

the notation. We possess 

𝜃𝑥𝐹(𝛼, 𝛽, 𝛾; 𝑥) = ∑
(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛𝑛!

∞

𝑛=0

 𝑛 𝑥𝑛 

However, according to the exercise:𝑘 (𝛼)𝑘 =  𝛼 ((𝛼 +  1)𝑘 −  (𝛼)𝑘) 

𝑛(𝛼)n =  𝛼((𝛼 +  1)n − (𝛼)n) and therefore 

𝜃𝑥𝐹(𝛼, 𝛽, 𝛾; 𝑥) = ∑ (
(𝛼 + 1)𝑛(𝛽)𝑛

(𝛾)𝑛𝑛!
−

(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛𝑛!
)

∞

𝑛=0

 

                    =𝑎(𝐹𝑎 + 1, 𝛽, 𝛾; 𝑥) − 𝐹(𝑎, 𝛽, 𝛾: 𝑥)) 

[E. L. Ince, 1944] Henceforth;(𝜃𝑥 +  𝛼)  ·  𝐹(𝛼, 𝛽, 𝛾;  𝑥)  =  𝛼 ·  𝐹(𝛼 +  1, 𝛽, 𝛾;  𝑥) 

6. GENERALIZATIONS OF THE 

HYPERGEOMETRIC FUNCTION 

Among the generalisations of the 

hypergeometric function are the following: 

➢ A generalisation of hypergeometric 

series based on two variables, the 

Appell series  

➢ Basic hypergeometric series in which 

the ratio of components is a 

periodically changing function of the 

index 

➢ Series of bilateral hypergeometric 

functions PHp are analogous to 

generalised hypergeometric series, 

except their sums are performed on all 

integers. 

➢ A type of elliptic hypergeometric series 

in which the ratio of terms is expressed 

as an elliptic function of the index 
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➢ In addition to the Meijer G-function, 

the Fox H-function also plays a role. 

➢ Function of Fox and Wright, which is a 

generalization of the generalized 

hypergeometric function 

➢ Generalized hypergeometric series 

denoted by the notation pFq, in which 

the ratio of terms is a rational function 

of the index 

➢ Function of the Heun, solutions of the 

second order ODEs that have four 

constant single points. 

➢ 34 different converging 

hypergeometric series in two variables 

make up The Horn Function. 

➢ The hypergeometric function of a 

matrix argument is a generalization of 

the hypergeometric series that may be 

applied to several variables. 

➢ The Lauricella hypergeometric series is 

a hypergeometric series that consists of 

three variables. 

➢ The MacRobert E-function is an 

extension of the generalized 

hypergeometric series pFq to the case in 

which p is greater than or equal to q+1. 

➢ Meijer G-function is an extension of 

the generalized hypergeometric series 

pFq to the case where p is greater than 

or equal to q+1. 

 

 

7. CONCLUSION 

Hypergeometric functions could appear while 

studying fractional calculus. The way these 

functions are carried out depends on the data 

(such fractionally integrated data) from time 

series and other branches of economics. A final 

observation on hypergeometric functions. They 

are currently included in a wide range of 

computer programmes due to their increasing 

importance in a wide range of mathematical 

applications. These software programmes 

include Mathematica and Maple, both of which 

let users manipulate symbols. One of its most 

important benefits, in addition to the general 

simplicity with which they approach problems, 

is their ability to offer clear solutions. 
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