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ABSTRACT 

Complex analysis has a number of subfields, one of which is called Geometric Function Theory. This 

subfield works with and researches the geometric features of analytic functions. To put it another way, 

geometric function theory is a branch of mathematics that is distinguished by an unusual marriage 

between geometry and analysis. In this article, we'll look at analytical functions that are defined on the 

complex plane C's open unit disc D=z:|z|1. With the normalization f(0) = 0 = f0(0) 1, let LU stand for 

the family of all locally univalent map-pings fanalytic in D. S stands for the subfamily of univalent 

mappings. Some significant and well-known standard subclasses of S are the class of convex, starlike 

of order 1/2, and close-to-convex mappings, designated by C, S, S(1/2), and K, respectively. However, 

it is not possible to analyze the class of these functions as a whole for a specific category of issues. 

Within the scope of this paper, we will investigate the issues that arise with several new kinds of 

functions that are connected to univalent functions. In this paper we discuss about some classes of 

analytic and univalent functions and Geometrical and Analytical Phenomena Related to Univalent 

Function Classes 

KEYWORDS: Univalent, Function, Analytical, Geometrical, etc. 

1. INTRODUCTION 

When the Bieberbach hypothesis regarding the 

size of the moduli of the Taylor coefficients of 

these functions was made in 1916, studies on 

analytical univalent functions became the focus 

of extensive research. The size of these 

functions' moduli was the subject of this 

speculation. The endeavour to discover a 

solution to the hypothesis led to the 

development of a number of spectacularly 

original mathematical techniques that later had 

a great impact. These techniques include, for 

instance, Lowner's parametric representation 

approach, the area method, Grunsky 

inequalities, and methods of variations. Despite 

de Branges's definitive debunking of the 

concept in the year 1985, complex function 

theory has remained a very active and important 

area of research. 
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The theory of multivalent and univalent 

functions has long been a well-established field 

of study. The name "Geometric Function 

Theory" refers to the intriguing way that the 

theory demonstrates how geometry and 

analysis interact with one another. This theory 

has drawn a lot of mathematicians and other 

scholars over the past few decades since there 

are so many distinct avenues that study may go 

in. An examination of a section of the geometric 

function theory is the focus of this paper. The 

geometrical and analytical characteristics of 

particular classes that are related to univalent 

functions are the focus of this area of the theory. 

A function f is said to be univalent in a domain 

D if and only if it accepts no more than one 

value in D and is analytic in D with the 

exception of no more than one simple pole. In 

other words, we had to have 

𝐹(𝑧1) ≠ 𝑓(𝑧2)     

if       𝑧1, 𝑧2 ∈  𝐷   and   z1≠ z2 

As a result, f is univalent in D if it maps D onto 

a schlicht (a word from German) or simple 

domain, that is, a domain without branch points 

and without self-overlapping. Due of this, the 

univalent functions are also referred to as 

schlicht or simple functions. 

To be termed simple, the theory of univalent 

functions is considerably too extensive and 

complex. As a result, in order to make the study 

task more doable, it is essential important to 

settle on a few simplifying hypotheses. The 

most straightforward method is to replace a 

given domainD with the unit discU=z: l. This 

strategy is the simplest. One advantage it 

provides is the capability to represent functions 

as power series, which facilitates calculation 

and results in formulas that are clear and 

appealing. In reality, any simply linked domain 

with a boundary made up of more than one 

point can be mapped onto the unit disc in 

accordance with the Riemann Mapping 

Theorem. This has been proven to be a fact. The 

characteristics of the original function can 

easily be translated into the characteristics of 

any univalent function in Dis that is connected 

to a univalent function in U if the function that 

maps D onto U is known. This only functions, 

though, if the function that maps D onto U is 

known. 

Additionally, a function 𝑓 that is analytic and 

univalent in the unit disc 𝑈 is normalised by the 

circumstances by which it is determined 

𝑓(𝑂)  =  0 and 𝑓′(𝑂)  =  1 

Indeed, if 𝑓 is univalent, then the function is also univalent 

𝑔(𝑧) =
𝑓(𝑧) − 𝑓(0)

𝑓′(0)
 

and it is possible to directly translate any 

property of the function g into a comparable 

property of the function f. Because the 

derivative of an analytic univalent function 

does not disappear, the division by 𝑓’(𝑂) is 

allowed to take place, as it may be shown out 

here. A normalized function, denoted by𝑓, will 

therefore have the following power series 

expansion: 

𝑓(𝑧) = 𝑧 + 𝑎2𝑧2+ ⋯ . 𝑎n𝑧n+ ⋯, 
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i.e,         𝑓(𝑧) = 𝑧 +   ∑ 𝑎𝑛𝑧𝑛∞
𝑛=2  

Let us designate by the letter A the class of 

functions f that have theequ. form, and which 

are able to be shown to be analytic in the unit 

disc 𝑈 = {𝑧: ǀ𝑧ǀ <  𝑙}. Denote by the letter 𝑆 the 

class consisting of all the functions in A that are 

equivalent to one another in the variable𝑈. 

The class of univalent functions with one 

simple pole in 𝑈 is normalised by demanding 

that the pole be located at the origin and that the 

residue of the pole have the value 1. In point of 

fact, if the pole of function 𝑓 is located at the 

point z0 that is part of the unit 𝑈 and the residue 

of the pole has the value 𝑎, then we consider the 

function g provided by instead of function𝑓 

𝑔(𝑧) =
1 − ǀ𝑧0ǀ2

𝑎
𝑓 (

𝑧 +  𝑧0

1 + 𝑧0𝑧̅̅ ̅̅
) 

It is obvious that g is univalent in 𝑈 because its 

pole is at the origin and its pole residue has the 

value 1. The letter Ʃ stands for the class of 

functions that can be normalized in this way. 

Therefore, the functions in Ʃ have the Laurent 

series expansion of the form:

𝑓(𝑧) =
1

𝑧
+ 𝑎0 + 𝑎1𝑧 + 𝑎𝑛𝑧𝑛+…+ 𝑎𝑛𝑧𝑛 + ⋯ 

𝑓(𝑧) =
1

𝑧
+   ∑ 𝑎𝑛𝑧𝑛

∞

𝑛=2

 

In 1907, Koebe published a paper titled "The 

Uniformization of Algebraic Curves," which is 

considered to be the foundational work for the 

study of univalent functions. A large number of 

modern mathematicians became interested in 

Koebe's discoveries and the challenges he 

posed. In the year 1916, it was Bieberbach who 

determined that a particular constant known as 

Koebe's constant had the exact value of 1/4 as 

its value. Only the existence of this constant 

was able to be demonstrated by Koebe. In 

addition, Bieberbach demonstrated that if a 

function 

𝑓(𝑧) = 𝑧 +   ∑ 𝑎𝑛𝑧𝑛

∞

𝑛=2

 

if this is the case and 𝑈 is analytic and univalent, then 

ǀ𝑎2ǀ≤ 2, 

and the equality only takes place for the functions. 

𝑓(𝑧) =
𝑧

(1 − ɳ𝑧)2′
ǀɳǀ = 1 

 This encouragedBieberbach to conjecture 

ǀ𝑎𝑛ǀ≤ 𝑛,           ∀𝑛 = 2,3,4, … 
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The failure to settle the Bieberbach conjecture 

in its general form resulted in the development 

of a number of significant and powerful 

approaches, such as the variational techniques, 

the inequality techniques of Goluzin and 

Grunsky, and the differential equation 

techniques developed by Lowner. Numerous 

scholars have looked into and looked into 

various subclasses of the classes of univalent 

and multivalent functions. These researchers 

have looked into and looked into these 

subclasses. More than 8,000 research articles 

have been published so far in this topic, and 

they provide a clear indication of both the 

purpose and breadth of research in the theory of 

univalent and multivalent functions.  

2. THEORY OF UNIVALENT 

FUNCTION  

There are numerous crucial branches in 

complex analysis. The Univalent Function 

Theory is one of the main branches, which 

examines one-to-one analytic functions in the 

unit disc 𝐷 =  {𝑧: |𝑧|  < 1}normalized to have 

Taylor series𝑓(𝑧)  =  𝑧 +  𝑎2𝑧2 +𝑎3𝑧3+. .. 

A function is said to be normalized if 𝑓(0)  =

 0and𝑓 ′(0)  =  1. 𝑆 is the name given to the 

category of functions that satisfy the 

requirements of being analytic, univalent, and 

normalised. In common parlance, the analytic 

and univalent function is most commonly 

referred to as conformal mapping. The many 

different analytical and geometrical features of 

the functions that fall under the class S have 

been the subject of a substantial amount of 

academic inquiry. A well-known conclusion is 

known as Bieberbach's Conjecture, which was 

formulated in 1916 and states that the Taylor 

coefficients must meet the condition |𝑎k|  ≤ 𝑘 

for every given value of 𝑓 in 𝑆, where k might 

take the values 2, 3, 4, etc.... A large number of 

researchers have made efforts to find an answer 

to the conjecture. Only a few numbers of people 

were able to produce a partial proof for specific 

subclasses of S or gain the proof for specific 

values of 𝑘. The theory of univalent functions 

has been enriched in numerous different areas 

as a result of an attempt to address the 

conjecture. It wasn't until 1985 that de Branges 

presented a convincing evidence of his 

theory.[A. W. Goodman, 1983] 

The Omitted Area Problem is another well-

known problem in the field of univalent 

functions. It was first posed in 1949 by 

A.W.Goodman and asks the following 

question: "what is the maximum area 𝐴 ∗ of the 

unit disc D that can be omitted by the image of 

the unit disc under a univalent normalised 

function?" (What is the largest area that can be 

omitted by the image of the unit disc?) A 

significant number of researchers have focused 

their attention on finding a solution to this issue 

and establishing limitations for𝐴 ∗. 

The fact that it is so difficult to manipulate 

tangible instances constitutes the primary 

roadblock on the path to a successful resolution 

of the problem. In the year 1907, Koebe laid the 

groundwork for what would become known as 

the theory of univalent function. There are 

several different existence theorems for 

canonical conformal mappings, and they all 

start with the traditional Riemann Mapping 

Theorem. On the other hand, there is a 

comprehensive theory of the qualitative 

features of conformal mappings, which focuses 

mostly on prior estimates and is referred to as 

the distortion theorems (including the 

Bieberbach conjecture with the proof of the De-

Branges). Throughout the course of our 

research, we look into both univalent and 

multivalent functions in great depth. The 

subclasses of these functions, such as starlike, 

convex, close to convex, spiral like, pre-

starlike, typical real functions, and 

Bazilevicfunctions, are defined on the unit disc. 

𝑈 =  {𝑧: |𝑧| < 1} and 𝑈 ∗ =  {𝑧 ∶  0 < │𝑧│ <
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1}bounds, the radius of starlikeness, convexity 

and being close to being convex, extreme 

points, the zone of univalency, convex linear 

combination, and other similar concepts.  

The primary importance is in the promotion of 

interdisciplinary work among pure 

mathematicians and the development of novel 

linkages between analytical analysis, applied 

mathematics, and geometry. We have placed a 

significant amount of emphasis on the linkages 

between the omitted area problem and 

conformal mappings in the unit disc. Second, 

multidisciplinary knowledge that has led to a 

better understanding of the phenomenon has 

been armed with materials and methods that can 

handle any assignment in a manner that is more 

scientific. It has come to our attention that the 

univalent function theory is relevant to a large 

number of subfields within mathematics and 

has various applications in the field of 

engineering. Numerous mathematicians are 

employing the theory in order to find answers 

to issues that have arisen in the fields of 

engineering and technology. The 

comprehension of the findings of this study is 

very interesting, both from a theoretical and an 

applied point of view.  

The "Bieberbach Conjecture" is just one 

example of the numerous mathematical 

conjectures that have been resolved thanks to 

the use of the theory of geometric functions. 

This hypothesis has been resolved for some 

values of 𝑛 and for all values of n for certain 

subclasses of univalent functions; nonetheless, 

the conjecture in its whole has not yet been 

resolved and is still up for debate. 

➢ Open conjectures:  

1. If f and g are in S (normalised univalent 

function in E), then f.g must be in S as 

well. If this conjecture were correct, it 

would be simple to demonstrate (in 

numerous ways) that ǀanǀ≤n, for every 

function in S. Unfortunately, 

hypothesis 2 is untrue and has been 

disproven on multiple times. 

2. Goodman proposed that if f and g are 

in 𝐶𝑉 (Let CV be the set of all 

normalised univalent functions 𝑓(𝑧) 

for which 𝑓(𝐸) is a convex region, and 

when f(z) is univalent in E, we say that 

the domain 𝐷 = 𝑓(𝐸) is a simple 

domain), then (𝑓 +  𝑔)/2 is at most 2-

valent. Styer and Wright created a pair 

of functions in CV for which (𝑓 +

 𝑔)/2 is 3-valent and they venture the 

judgement that this sum "may very well 

be infinite-valent for some f and g in 

CV". 

➢ The following Ruscheweyh and Salagean 

operators are provided: 

1. The differential operator Ruscheweyh 

of order n is 

𝐷𝑛𝑓(𝑧) =
𝑧(𝑧𝑛−1𝑓(𝑧))

(𝑛)

𝑛!
, 𝑛𝜖𝑁0 = 𝑁𝑈{0} 

Consider that 𝐷0𝑓(𝑧) = 𝑓(𝑧) 𝑎𝑛𝑑 𝐷’𝑓(𝑧) = 𝑧𝑓 

2. Salagean has introduced the operator known as the Salagean operator. 

𝐷0𝑓(𝑧) = 𝑓(𝑧), 𝐷1𝑓(𝑧) = 𝐷𝑓(𝑧) = 𝑧𝑓′(𝑧); 

𝐷𝑛𝑓(𝑧) = 𝐷(𝐷𝑛−1𝑓(𝑧)); 𝑛𝜖𝑁 = {1,2,3. . } 
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Consider that 𝐷n𝑓(𝑧) = 𝑧 +   ∑ 𝑎𝑘𝑧𝑘∞
𝑘=2 𝑘𝑛 ,       𝑛 ∈ 𝑁0= 𝑁𝑈{0} 

3. BASIC SUBCLASSES OF 

UNIVALENT FUNCTIONS 

In this part, the definitions of several 

fundamental subclasses of these analytic 

univalent functions are given in terms of simple 

geometric features. Because of their strong 

relationship with functions that have a positive 

real part and with subordination, the classes in 

question can be completely described by using 

simple inequality. 

It is said that a set 𝐷 in the plane is starlike with 

respect to w0, an interior point of 𝐷, if the type 

of thing that each ray that begins at w0 and 

intersects with 𝐷's interior in a set is either a 

line segment or a ray. We say that a function 𝑓 

is starlike with regard to w0 if it transfers the 

domain 𝕌 onto a starlike domain. When the 

variable w0=0, we refer to the function f as a 

starlike function. We will now present an 

analytical characterization for such functions. 

A function f belonging to the class 𝒜 is said to 

have starlike behaviour in 𝕌 if and only if 

ℛ(
𝑧𝑓′(𝒵)

𝑓(𝒵)
)>0, 𝒵 ∈  𝕌 

The collection of all in 𝕌 starlike functions is 

denoted by S*. Alexander (1915) started out 

looking into this class.A set 𝐷 in the plane is 

referred to as convex if the line segment 

connecting any two locations w1 and w2 inside 

of 𝐷 is also inside𝐷. A function is said to be 

convex in 𝕌 if it maps another function, 𝕌, onto 

a convex domain. In other words, a convex 

domain is one that, with regard to each of its 

points, has the shape of a star. The analytical 

description of the convex function is provided 

by 

𝑓 ∈ 𝒦 ⇔ ℛ (
𝑧𝑓′′(𝒵)

𝑓′(𝒵)
>0, 𝓏 ∈ 𝕌 

where K is the collection of all logical 

operations that are convex in 𝕌. For example, 
the functions log [

1+𝓏

1+𝓏
] and 

𝓏

1−𝓏
are convex in U. 

From the arguments above, it is clear that 

𝐾 ⊂  𝑆 ∗ ⊂  𝑆 

Although not convex, the Koebe function 

resembles a star. Alexander (1915) was the first 

to discover that convex and starlike functions 

have a strong analytic link; this finding is 

known as Alexander's Theorem. If 𝑓 is an 

analytical function in 𝕌 with 𝑓 (0)  =  0 and 

’(0)  =  1, then, according to this, 

𝑓 ∈ 𝒦 ⇔ 𝓏𝑓′ ∈ 𝑠 ∗, 𝓏 ∈ 𝕌 

The classes 𝑆 ∗ (𝑎) and 𝐾 (𝑎) of starlike and 

convex functions of order𝑎, 0 ≤ 𝑎 ≤ 1 were 

introduced by Robertson by means of an order 

language. These classes are defined by 

𝑆 ∗ (𝑎) = {𝑓 ∈ 𝐴: ℛ (
𝑧𝑓′(𝒵)

𝑓(𝒵)
> (𝑎), 𝓏 ∈ 𝕌} 

𝒦(𝑎) = {𝑓 ∈ 𝐴: 𝓏𝑓′ ∈ 𝑠 ∗ (𝑎), 𝓏 ∈ 𝕌} 
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We obtain the well-known classes of starlike 

and convex univalent functions for 𝑎 =  0. F.  

4. GEOMETRIC FUNCTION THEORY  

The area of complex analysis known as 

"Geometric Function Theory" deals with and 

investigates the geometric characteristics of 

analytical functions. In other words, the field of 

mathematics known as Geometric Function 

Theory is distinguished by an unusual union of 

geometry and analysis. Despite having 

nineteenth-century roots, it continues to find 

novel applications today. The study of 

univalent function qualities is a major focus of 

geometric function theory of a single-valued 

complex variable. If the image domain of the 

open unit disc 𝑈 =  𝑧 𝐶: |𝑧| < 1 under a 

univalent function has some appealing 

geometric characteristics, it may be of interest. 

A domain with intriguing features is best shown 

by a convex domain. One that is star-shaped in 

relation to a point is another illustration of such 

a domain. 

It is a traditional subject to study geometric 

function theory. However, it continues to find 

new uses in a wide range of domains, including 

non-linear integrable systems theory of partial 

differential equations, current mathematical 

physics, and more conventional branches of 

physics like fluid dynamics. The history of 

geometric function theory is not as long as 

those of other areas of mathematics. Function 

theory began to take off in the 18th century with 

the work of Euler. The nineteenth century saw 

the development of modern function theory. 

Function theory saw quite significant victories 

in a relatively short period of time throughout 

the previous century. 

The methods of algebraic geometry and 

function theory on compact Riemann surfaces 

have found relevance in constructing 'finite-

gap' solutions to non-linear integrable system, 

which is a growing, specialised area of 

mathematics that has many connections to 

mathematical physics. As a result, there has 

been a rebirth in interest in geometric function 

theory over the past few decades. For the 

computation of so-called Veneziano 

amplitudes, early string theory models rely on 

aspects of geometric function theory. Even 

recent advancements in the constructive 

approach to linear and non-linear boundary 

value and initial value issues using spectral 

analysis are likely to lead to a role for geometric 

function theory in the solution of a wide variety 

of partial differential equations. Classical work 

has been done in the field of geometric function 

theory. However, it continues to find new 

applications in an ever-growing array of topics, 

such as current mathematical physics, more 

traditional branches of physics such as fluid 

dynamics, and the theory of non-linear 

integrable systems and partial differential 

equations. 

In comparison to other subfields of 

mathematics, the geometric function theory is a 

more recent development. Euler is credited for 

initiating the initial stirrings of function theory 

in the 18th century. The nineteenth century was 

a pivotal time for the development of modern 

function theory. The field of function theory 

achieved a considerable deal of success within 

a relatively brief period of time over the 

previous century. In the space of just a few 

decades, a building of academic significance 

was constructed, and it almost instantly 

received the greatest appreciation from the 

mathematical community. 

The theory of univalent functions is considered 

to be one of the most aesthetically pleasing 

aspects of geometric function theory. Aside 

from the Riemann mapping Theorem, its 
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beginnings can be traced back to Gronwall's 

proof of the area theorem in 1914 and to 

Bieberbach's estimate for the second coefficient 

of normalised univalent functions in 1916 and 

its consequences. Both of these can be 

considered Gronwall's contributions to the 

field. By that point, univalent function theory 

had become a distinct field of study in its own 

right. 

5. ANALYTIC FUNCTIONS OF 

NORMALIZED CLASS 𝓐 

At the point z0 in ℂ, a complex-valued function 

f of the complex variable 𝑧 is said to be 

differentiable, if lim
𝓏→𝓏0

𝑓(𝓏)−𝑓(𝓏0)

𝓏−𝓏0
exists. An 

analytic function f at z0 is differentiable at z0 

and at every point in some neighbourhood of z0. 

If a complex-valued function f of a complex 

variable z is analytic at every point in that 

domain𝐷, it is said to be analytic in that 

domain 𝐷. 

One of the wonders of complex analysis is that 

an analytic function f has derivatives of all 

orders and has a Taylor series representation of 

the form. 

𝑓(𝓏)= ∑ 𝑎𝑛
∞
𝑛=0 (𝓏 − 𝓏0)𝑛,𝑎𝑛 =

𝑓(𝑛)(𝓏0)

𝑛!
 

convergent in some open disk at z0. We will be 

primarily concerned with the class 𝒜 of 

analytic functions in the open unit disc 𝕌, 

normalised by the requirements 𝑓 (0)  =  0 and 

𝑓’(0)  =  1. The generality is unaffected by 

these normalising criteria. Specifically, 𝒜 

denotes the class of functions of the form: 

𝑓(𝓏)= 𝓏 + ∑ 𝑎𝑛𝓏𝑛∞
𝑛=2 𝓏 ∈ 𝕌 

Assume that S is a subclass of𝒜, the class of all 

analytic, univalent functions 𝑓 in the open unit 

disc 𝕌. Due to the Riemann Mapping Theorem, 

which states that any simply connected domain 

D ⊂ℂwith at least two border points may be 

translated conformally onto the open unit 

disc𝕌, open unit disc 𝕌 was used above in place 

of an arbitrary domain D. 

If 𝑤 =  𝑓 (𝑧) assumes different values for 𝑤, 

then the function 𝑓 analytical in 𝕌 is said to be 

univalent in 𝕌 for distinct z in 𝕌. In this 

instance, 𝑤 =  𝑓 (𝑧) has just one root in 𝕌 at 

most. Univalent is sometimes referred to by 

other terms like simple or Schlicht (the German 

word for simple). A univalent function, or one 

that never accepts the same value twice, is one 

that has the formula f (z1) ≠ f (z2) for all points 

z1 and z2 in 𝕌 with z1≠ z2. 𝒜 univalent 

function, or 𝑓, is a one-to-one (injective) 

mapping of the domain 𝕌 onto another domain. 

In the study of the class S, the univalent Koebe 

function 𝑘(𝓏)=
1

(1−𝓏)2is crucial. The only 

extremal functions for different problems in the 

class S are the Koebe function and its rotations 

e-iak(e-iaz) and a∈ ℝ. Bieberbach is responsible 

for the two main outcomes (1916) indicating 

that when𝑓 ∈ 𝑆, then |a2| ≤ 2 and 𝑓(𝑧) assumes 

every value of w such that |w|<1/4. These two 

outcomes are both precise. The Koebe function 

k maps the disc 𝕌, one-one and conformally 

onto the w-plane cutting from -1/4 to -∞ along 

the negative real axis. DeBranges (1985) 

proved the Bieberbachconjecture for the 

coefficient estimates of the class 𝑆 that |an|< 𝑛 

holds for n ≥ 2 and so solved the famous 

problem in the univalent function theory. 

6. ANALYTIC AND UNIVALENT 

FUNCTIONS 
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Let ℋ us refer to the class of analytic functions 

on the unit disc as H, where D stands for the 

equation D: = {z ∈ℂ: |z| < 1}. In this context, 

"ℋ" refers to a topological vector space that is 

locally convex and is endowed with the 

topology of uniform convergence across 

compact subsets of "𝔻." Let us designate by the 

letter 𝒜 the class of functions f ∈ℋ in which f 

(0) = 0 and f’ (0) = 1, and let us designate by 

the letter  the subclass of functions f ∈𝒜 that 

are univalent (that is, one-to-one) in 𝔻. The 

following is the representation that applies to 

each function f ∈ : 

𝒇(𝒛) = 𝒛 + ∑ 𝒂𝒏𝒛𝒏

∞

𝒏=𝟐

 

It is stated that a set D ⊂ℂ has a starlike 

relationship with regard to a point z0∈ D if the 

line segment that connects z ∈ D to every other 

point z ∈ D is wholly inside D. Convexity may 

be defined as the property of a set D being such 

that every line segment linking any two points 

of D falls wholly inside D. If the function f (D) 

is starlike with regard to the origin, then the 

function f∈𝒜is said to be starlike (or convex, 

respectively) (convex respectively). In the set 

S, the classes of starlike functions are denoted 

by the letter , while convex functions are 

denoted by the letter * and ℂ. It is well 

knowledge that a function f∈𝒜is considered to 

be a member of  if, and only if, the value of 

Re (zf’ (z)/f (z)) > 0 for z ∈𝔻. In the same vein, 

a function f∈𝒜is considered to be part of 

category 𝒞 if and only if the value of the ratio 

Re (1+z 𝑓′′(z)/f’ (z)) > 0 for z ∈𝔻. Alexander 

demonstrated that f ∈ 𝒞if, and only if, zf’∈ ∗. 

Given α ∈ (−π/2, π/2) and g ∈ ∗, a function 

f∈𝒜is said to be close-to-convex with 

argument α with respect to g if: 

𝑅𝑒 (𝑒𝑖𝑎
𝑧𝑓′(𝑧)

𝑔(𝑧)
) > 0 𝑓𝑜𝑟 𝑧 𝜖 𝔻  

Let the class of all functions of this kind be denoted by 𝒦a(g), and: 

𝒦(𝑔) ≔  ⋃ 𝒦𝑎(𝑔)𝑎𝑛𝑑 𝒦𝑎 ∶= 

𝑎𝜖(−𝜋/2,𝜋/2)

 

be the groups of functions that are near to convex with respect to g, and the groups of functions that are 

close to convex with respect to argument α. Let 

𝒦 ≔ ⋃ 𝒦𝑎

𝑎𝜖(−𝜋/2,𝜋/2)

=  

be the class of functions that are near to being 

convex. It is common knowledge that each and 

every function that is nearly convex is univalent 

in D. When it comes to geometry, f ∈𝒦 

indicates that the complement of the picture 

domain f (𝔻) is the union of half-lines that do 

not overlap each other. The appropriate 

inclusions provide a connection between these 

standard classes.  

Let us assume that X is a linear topological 

vector space and that V ⊆ X. If there is no 
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representation of the form x = ty + (1 − t)z, 0 < 

t < 1 as a correct convex combination of two 

different points y, z ∈ V, then the point x falls 

into the category of an extreme point of the 

vector space V. We will refer to the collection 

of points that are the most extreme in V as EV. 

A set V is said to have a convex hull if the 

smallest convex set that contains V is called the 

convex hull of V. The V ⊆ X that include V is 

what is meant when we talk about the closed 

convex hull, which is symbolized by the 

symbol 𝑐𝑜̅̅ ̅𝑉. As a result, the closure of the 

convex hull of V is the smallest convex set that 

is closed and contains V. This means that the 

closed convex hull of V is the smallest convex 

set. According to the Krein–Milman theorem 

[9], every compact subset of a locally convex 

topological vector space is included in the 

closed convex hull of its extreme points. This 

assertion was made in the context of topological 

vector spaces. It is said that a function f is a 

support point of a compact subset ℱ, of ℋ if f 

∈ℱ,and if there exists a continuous linear 

functional J on ℋ such that Re J is not constant 

on ℱ, and if there are two further conditions. 

𝑅𝑒 𝐽(𝑓) = max{𝑅𝑒 𝐽(𝑔): 𝑔 𝜖  ℱ, 

Supp ℱ, denotes the set of all support points of 

a compact family ℱ, 

Studies have been done on the support points of 

families of convex functions that resemble 

stars, as well as support points of functions that 

are near to being convex. In this work, have 

shown a necessary and sufficient condition for 

the harmonic Bloch mapping f to be a support 

point of the unit ball of the normalized 

harmonic Bloch spaces in 𝔻.  

For 0 < λ ≤ 1, let U (λ) be the class of functions 

𝑓 𝜖 𝒜 satisfying 

|𝑓′(𝑧) (
𝑧

𝑓(𝑧)
)

2

− 1| < 𝜆 𝑓𝑜𝑟 𝑧 𝜖 𝔻  

Each function in 𝒰 (λ) is non-vanishing in 𝔻\ 

{0} because 𝑓′(𝑧)(𝑧/𝑓(𝑧))2only has finite 

values. Set: =𝒰 (1). It is also obvious that in 𝒰 

(λ), functions are locally univalent. 

Furthermore, functions in 𝒰 (λ), or 𝒰 (λ) ⊆  

for 0 < λ ≤ 1, have been shown by. As a result, 

functions in 𝒰 are univalent, however not all of 

them are starlike, contrary to what one would 

anticipate given the similarity of their analytic 

representations. Since the class of starlike 

functions is relatively broad, this makes them 

intriguing since in the theory of univalent 

functions, it matters whether a class does not 

totally reside within . Ali et al. have 

explored the properties of meromorphic 

functions belonging to the class 𝒰 (λ), as well 

as the integral mean problem and arc length 

issue for functions in 𝒰. Despite the fact that 

neither nor ,  have shown 

that their major finding—that 

z/(1−xz)2∈ S * ∩ 𝒰 for each x such that |x| = 

1. To learn more about the class 𝒰 (λ). Let G 

represent the class of satisfied functions f ∈𝒜. 

𝑅𝑒 (1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
) > −

1

2
                𝑓𝑜𝑟 𝑧 𝜖 𝔻  

𝒢 functions are almost convex because they are convex in one direction. Additionally, if f ∈ G and is 

of the form, we get the coefficient inequality shown below. 
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|𝑎𝑛| ≤
𝑛 + 1

2
         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 2 

with equivalence only for the rotations of the function g0(z), where: 

𝑔0(𝑧) =
𝑧 − (

𝑥

2
) 𝑧2

(1 − 𝑥𝑧)2
,        |𝑥| = 1 

Before we begin to demonstrate our key 

conclusions, we will first discuss many 

significant lemmas. These lemmas are going to 

play an essential part in the demonstration of 

our primary results. 

Lemma 1.If, and only if, there is a sequence bn 

of complex numbers that meet certain 

conditions, then J may be considered a 

complex-valued continuous linear functional 

on ℋ. 

 

They are of such a kind that: 

𝐽(𝑓) = ∑ 𝑏𝑛𝑎𝑛

∞

𝑛=0

 

where 𝑓𝜖 ℋ and 𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0  𝑓𝑜𝑟 |𝑧| < 1 

Lemma 2.Let ℱ, be a constrained subset of ℋ, and let J be a continuous linear function with complex 

values that operates on ℋ. Then 

max{𝑅𝑒 𝑗(𝑓): 𝑓𝜖 𝑐𝑜̿̿ ̿ ℱ} = max{𝑅𝑒 𝐽(𝑓): 𝑓 𝜖 ℱ} = max{𝑅𝑒 𝐽(𝑓): 𝑓𝜖𝐸𝑐𝑜̅̅ ̅̅ ̅ℱ} 

Lemma 3.𝑐𝑜̿̿ ̿𝒰includes all functions denoted by the letter f that have a representation 

𝑓(𝑧) = ∫|𝑥|=1

𝑧

(1 − 𝑥𝑧)2
, |𝑥| = 1         

Lemma 4.𝑐𝑜̿̿ ̿𝒢f includes all of the functions and their representations. 

𝑓(𝑧) = ∫|𝑥|=1

𝑧 − (
𝑥

2
) 𝑧2

(1 − 𝑥𝑧)2
 𝑑𝜇(𝑥) 

where µ ∈∧, and ∧signifies the collection of probability measures that may be applied to ∂𝔻. In addition, 

𝐸𝑐𝑜̅̅ ̅̅ ̅𝒢 is made up of the functions f that make up the form. 

𝑓(𝑧) =
𝑧 − (

𝑥

2
) 𝑧2

(1 − 𝑥𝑧)2
, |𝑥| = 1       
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In this part, we are going to describe the 

collection of support points that are used by the 

classes. 

7. CONCLUSION 

As a connection between geometry and 

analysis, the study of subclasses of analytic and 

univalent functions in geometric theory and 

applications has garnered a broad variety of 

attention among function theorists in recent 

years. It is possible for there to be as many 

subclasses of analytical and univalent functions 

as there are scholars who are interested in the 

field. The major importance is in the promotion 

of interdisciplinary work among pure 

mathematicians as well as the development of 

novel linkages between analytical analysis, 

applied mathematics, and geometry. This study 

presents the results of an investigation into 

univalent functions. The theory of univalent 

functions is a classical topic in complex 

analysis and is considered to be one of the most 

attractive subjects in geometric function theory. 

This problem has been studied for a very long 

time. It focuses on the geometric features of 

analytic functions that were discovered around 

the turn of the 20th century. On the basis of the 

findings made thus far, we are able to state a 

number of different classes of univalent 

functions. 
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