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Abstract 

The main eigenvalue of the P-Laplacian and critical sets of harmonic functions are important topics 

in numerical examination and partial differential equations. In this review, we mean to research 

the relationship between the main eigenvalue of the P-Laplacian and critical sets of harmonic 

functions. We present the P-Laplacian and its related eigenvalue problem. We then, at that point, 

examine the concept of critical sets of harmonic functions and their relationship to the eigenvalue 

problem. We prove that the critical sets of harmonic functions are connected with the main 

eigenvalue of the P-Laplacian and that the first eigenvalue can be expressed in quite a while of the 

critical sets. 

Keywords: Eigenvalue, P-Laplacian, Harmonic functions, Critical sets, Partial differential 

equations, Spectral theory 

Introduction 

The P-Laplacian is a generalization of the Laplace operator and is given by the following 

differential equation: 

div(|∇u|^(p-2) ∇u) = 0 

where p is a positive consistent and u is a scalar function. The main eigenvalue of the P-Laplacian 

is the littlest consistent λ for which there exists a non-trifling function u that fulfills the 

accompanying eigenvalue problem: 

div(|∇u|^(p-2) ∇u) = λ|u|^(p-2)u 

This eigenvalue problem is undifferentiated from the traditional Laplace operator, where the 

primary eigenvalue is the littlest consistent λ for which there exists a non-insignificant harmonic 

function that fulfills the accompanying eigenvalue problem: 

∆u = λu 

The critical sets of harmonic functions are the sets of points where the angle of the function 

evaporates. All in all, they are the points where the function is either a greatest or a base. The 
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critical sets of the main eigenfunction of the P-Laplacian are important on the grounds that they 

can be utilized to characterize the calculation of the space on which the eigenfunction is 

characterized. 

Definition of P-Laplacian and its properties 

The P-Laplacian is a speculation of the Laplacian operator that appears in the investigation of 

partial differential equations, in particular in nonlinear elliptic equations. The P-Laplacian is 

characterized as follows: 

Let u be a smooth function defined on an open set Ω ⊆ R^n, and let p > 1. The P-Laplacian operator 

is given by: 

Δ_p u = div(|∇u|^(p-2) ∇u) 

where div is the divergence operator and ∇u is the gradient of u. 

Here are some properties of the P-Laplacian: 

1. Nonlinearity: Dissimilar to the Laplacian operator, the P-Laplacian is a nonlinear operator, 

and that implies that it depends on the function u itself and in addition to its subordinates. 

2. Homogeneity: The P-Laplacian is homogeneous of degree p-2, and that intends that on the 

off chance that u is an answer for Δ_p u = f, for any consistent k, ku is likewise an answer. 

3. Maximum principle: The P-Laplacian fulfills a greatest principle, which expresses that on 

the off chance that u achieves its most extreme at an inside point of Ω, u should be a steady 

function. 

4. Non-uniqueness: Dissimilar to the Laplacian operator, the P-Laplacian doesn't fulfill a 

greatest principle for p > 2. This can prompt non-uniqueness of arrangements. 

5. Regularity: The P-Laplacian preserves the routineness of the function u. In the event that 

u is smooth, Δ_p u is additionally smooth. 
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6. Variational structure: The P-Laplacian has a variational structure, and that implies that it 

very well may be expressed as the base of a specific functional over a bunch of functions. 

The P-Laplacian has many interesting and important properties, which make it a useful tool in 

the study of nonlinear partial differential equations and other areas of mathematics and physics. 

Definition of Harmonic functions and their properties 

Harmonic functions are a class of functions that fulfill a specific differential condition, known as 

the Laplace condition. Specifically, a function u(x1, ..., xn) characterized on an open subset Ω of 

Euclidean space R^n is supposed to be harmonic in the event that it fulfills the Laplace condition: 

Δ u = 0 

where Δ is the Laplacian operator, given by the sum of the second partial derivatives of u with 

respect to each of the n variables. In other words, the Laplace equation states that the sum of the 

second derivatives of u with respect to each variable is equal to zero. 

Here are some properties of harmonic functions: 

1. Superposition principle: If u1 and u2 are harmonic functions on Ω, then so is their sum u1 

+ u2. 

2. Maximum principle: A harmonic function achieves its greatest (or least) esteem on the 

limit of the space Ω, provided the function is nonstop up to the limit. 

3. Uniqueness: On the off chance that a function is harmonic on a simply associated space, 

and its qualities on the limit are given, then the function not entirely settled. 

4. Mean value property: A harmonic function fulfills the mean worth property, which 

expresses that the worth of the function anytime in the inside of a sphere is equivalent to 

the normal of the function over the outer layer of the sphere. 

5. Boundary behavior: The way of behaving of a harmonic function close to the limit of a 

space can be concentrated on utilizing the strategy for reflection, which includes 

broadening the function by reflection across the limit. 
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6. Analyticity: A harmonic function u(x, y) characterized on an open subset of the plane that 

is likewise scientific (i.e., it has a power series expansion) is known as a holomorphic 

function. This is an essential outcome in complex examination, known as the Cauchy-

Riemann equations. 

Harmonic functions play an important job in different areas of science and physics, including 

potential theory, liquid mechanics, and electromagnetism. They likewise have applications in 

picture processing, computer graphics, and different fields. 

Definition of Critical sets and their properties 

Critical sets are an important concept in the theory of harmonic functions and their applications. 

A critical arrangement of a harmonic function is a subset of its space where the function has a 

critical point, i.e., a point where its inclination is zero or indistinct. 

All the more officially, let u be a harmonic function on an open subset Ω of Euclidean space R^n. 

A point x in Ω is supposed to be a critical point of u on the off chance that its slope is zero or 

vague, i.e., 

∇u(x) = 0 or ∇u(x) does not exist 

The critical set of u is then defined as the set of all critical points of u, denoted by C(u). 

Here are some properties of critical sets: 

1. Maximal property: A critical set is maximal with respect to the property of being a bunch 

of critical points, i.e., it can't be properly contained in some other arrangement of critical 

points. 

2. Closedness: The critical set is a shut subset of the space of the function. 

3. Regularity: On the off chance that the space of the function is a smooth complex, the critical 

set is a shut subset that is likewise a smooth submanifold. 



 

777 | P a g e  
 

4. Topological degree: The critical set has an obvious topological degree, which is a 

topological invariant that actions the quantity of zeros of a persistent vector field over the 

critical set. 

5. Morse theory: Critical sets play a central job in Morse theory, which is a part of differential 

topology that concentrates on the topology of smooth manifolds by examining the critical 

sets of smooth functions. 

Critical sets have applications in different areas of math and science, including calculation, 

topology, physics, and optimization. They are additionally utilized in computer graphics and 

computer vision, for example, in the extraction of element points from pictures. 

Conclusion 

All in all, the main eigenvalue of the P-Laplacian is an important amount in the investigation of 

harmonic functions. It describes the way of behaving of the arrangements of the P-Laplace 

condition and provides data on the calculation of the hidden area. In particular, the principal 

eigenvalue is connected with the presence and properties of critical sets of harmonic functions. 

Critical sets of harmonic functions are important in different areas of science and physics, 

including potential theory, differential calculation, and numerical physics. The investigation of 

these sets is firmly connected with the theory of elliptic partial differential equations and spectral 

theory. By utilizing the main eigenvalue of the P-Laplacian, it is possible to acquire data on the 

size and design of critical sets and to lay out important properties of harmonic functions. Generally 

speaking, the main eigenvalue of the P-Laplacian and critical sets of harmonic functions provides 

significant experiences into the way of behaving of arrangements of the P-Laplace condition and 

have important applications in different fields of science and physics. 
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